Search results

1 – 10 of 18
Article
Publication date: 1 July 2014

Dongliang Sun, Jinliang Xu and Peng Ding

Based on the numerical research on the relationship between the flow pattern transition and the condensation heat transfer in circular microchannels, the purpose of this paper is…

Abstract

Purpose

Based on the numerical research on the relationship between the flow pattern transition and the condensation heat transfer in circular microchannels, the purpose of this paper is to bring forward a concept of external separation circular microchannel to regulate and control the flow pattern for enhancing the condensation heat transfer.

Design/methodology/approach

The numerical research is based on the volume of fluid method and the vapor-liquid phase change model proposed by the present authors.

Findings

By numerical research on the condensation process of water in a general circular microchannel, it is discovered that, with the increase of the inlet velocity and the reduction of the temperature difference between the saturation temperature and the channel wall temperature, the bubble detachment frequency is raised and the water vapor condensation length is extended, representing an exponential growth. Therefore, for the condensation process with low temperature difference and high mass flow rate, it is in urgent need to regulate and control the flow pattern.

Originality/value

To prevent the flow pattern in the general circular microchannel converted from annular flow to slug flow and then to bubble flow, this paper brings forward a concept of external separation circular microchannel, which regulates and controls the flow pattern by discharging partial liquid from the annular wall opening. After regulation and control, the flow pattern is converted from original periodic annular flow/slug flow/bubble flow to current stable annular flow. Accordingly, the heat transfer performance is enhanced and the condensation length is lowered remarkably.

Details

Engineering Computations, vol. 31 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 January 2019

Jinliang Liu and Yanmin Jia

Cement fly ash gravel (CFG) pile composite foundation is an effective and economic foundation treatment approach, which is significant to build foundation, subgrade construction…

Abstract

Purpose

Cement fly ash gravel (CFG) pile composite foundation is an effective and economic foundation treatment approach, which is significant to build foundation, subgrade construction, and so forth. The purpose of this paper is to present a research on the temperature behaviours of high-latitude and low-altitude island permafrost under CFG pile composite foundation treatment.

Design/methodology/approach

In the process of CFG pile construction, the temperature of permafrost and pile body was monitored using the temperature sensors. The influence of subgrade height and atmospheric temperature cycle on permafrost temperature was analysed by finite element simulation.

Findings

In the process of CFG pile construction, the change curve of pile temperature and the temperature of permafrost beside pile following time can be divided into six stages, and the duration of these stages is at least one month. The temperature variation of permafrost while constructing subgrade in FEM has a good agreement with the results of field temperature monitoring. The height of subgrade not only affects the maximum temperature increase of permafrost and the re-frozen time of permafrost after the construction of CFG pile composite foundation, but also affects the temperature variation amplitude of permafrost during atmospheric temperature cycle.

Originality/value

The research will provide a reference for the design on the CFG pile composite foundation used for island permafrost and guarantee the stability of the structure; thus, it has an important significance.

Details

International Journal of Structural Integrity, vol. 10 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 December 2018

Jinliang Liu, Yanmin Jia, Guanhua Zhang and Jiawei Wang

The calculation of the crack width is necessary for the design of prestressed concrete (PC) members. The purpose of this paper is to develop a numerical model based on the…

Abstract

Purpose

The calculation of the crack width is necessary for the design of prestressed concrete (PC) members. The purpose of this paper is to develop a numerical model based on the bond-slip theory to calculate the crack width in PC beams.

Design/methodology/approach

Stress calculation method for common reinforcement after beam crack has occurred depends on the difference in the bonding performance between prestressed reinforcement and common reinforcement. A numerical calculation model for determining the crack width in PC beams is developed based on the bond-slip theory, and verified using experimental data. The calculation values obtained by the proposed numerical model and code formulas are compared, and the applicability of the numerical model is evaluated.

Findings

The theoretical analysis and experimental results verified that the crack width of PC members calculated based on the bond-slip theory in this study is reasonable. Furthermore, the stress calculation method for the common reinforcement is verified. Compared with the model calculation results obtained in this study, the results obtained from code formulas are more conservative.

Originality/value

The numerical calculation model for crack width proposed in this study can be used by engineers as a reference for calculating the crack width in PC beams to ensure the durability of the PC member.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 August 2018

Jiawei Wang, Guanhua Zhang, Jinliang Liu and Yanmin Jia

During service period, the bridge structures will be affected by the environment and load, so the carrying capacity will decline. The purpose of this paper is to research on the…

Abstract

Purpose

During service period, the bridge structures will be affected by the environment and load, so the carrying capacity will decline. The purpose of this paper is to research on the bearing capacity of bridge structures with time.

Design/methodology/approach

Destructive test and non-linear finite element analysis are carried out by utilizing two pretensioning prestressed concrete hollow slabs in service for 20 years; using the structural test deflection value to simulate the stiffness degradation of the service bridge and the finite element calculation results verify the accuracy of the calculation.

Findings

The flexural rigidity of the main beam when the test beam is destructed is degraded to approximately 20 percent of that before the test, which agrees well with the result of finite element analysis and indicates that the method of deducing the flexural rigidity of the structure according to the measured deflection value can effectively simulate the rigidity degradation law of the bridge in service. The crack resistance property of the test beam degrades obviously and the ultimate bearing capacity of the bending resistance does not degrade obviously.

Originality/value

The research results truly reflect the destruction process, destructive form, bearing capacity and rigidity degradation law of the old beam of the concrete bridge in service for 20 years and can provide technical basis for optimization design of newly built bridges of the same type and maintenance and reinforcement design of existing old bridges.

Details

International Journal of Structural Integrity, vol. 9 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 15 November 2022

Qiang Lu, Yang Deng, Beini Liu and Jinliang Chen

As an effective mode to help small and medium enterprises (SMEs) raise working capital, supply chain finance has recently gained extensive attention. The purpose of this paper is…

Abstract

Purpose

As an effective mode to help small and medium enterprises (SMEs) raise working capital, supply chain finance has recently gained extensive attention. The purpose of this paper is to explore the intrinsic mechanism of how both weak and strong ties in the supply chain network impact the supply chain financing performance (SCFP) of SMEs from the perspective of the supply chain network.

Design/methodology/approach

Based on the extended resource-based perspective, this paper proposes a theoretical model to explain the mode in which strong ties and weak ties of SMEs in the supply chain network influence SCFP through both physical distribution flexibility and demand management flexibility. Based on data from 182 manufacturing firms in China, this paper uses multiple regression analysis to test hypotheses.

Findings

The results of this paper indicate that weak ties improve SCFP more effectively than strong ties. Furthermore, both physical distribution flexibility and demand management flexibility exert different mediating roles either between strong ties and SCFP or between weak ties and SCFP. Moreover, the effect of physical distribution flexibility and demand management flexibility on SCFP of SMEs is not reinforced.

Originality/value

This paper highlights the importance to expand supply chain finance research from the perspective of the supply chain network. In particular, this paper explores the poorly understood mediating effect both physical distribution flexibility and demand management flexibility exert on the relationship between network ties and the SCFP of SMEs.

Details

Journal of Business & Industrial Marketing, vol. 38 no. 9
Type: Research Article
ISSN: 0885-8624

Keywords

Article
Publication date: 17 July 2019

Guanhua Zhang, Jiawei Wang, Jinliang Liu, Yanmin Jia and Jigang Han

During service, cracks are caused in prestressed concrete beams owing to overload or other non-load factors. These cracks significantly affect the safety of bridge structures. The…

Abstract

Purpose

During service, cracks are caused in prestressed concrete beams owing to overload or other non-load factors. These cracks significantly affect the safety of bridge structures. The purpose of this paper is to carry out a non-linear iterative calculation for a section of a prestressed concrete beam and obtain the change in stiffness after the section cracks.

Design/methodology/approach

The existing stress of prestressed reinforcement was measured by performing a boring stress release test on two pieces of an in-service 16 m prestressed concrete hollow plate. Considering the non-linear effects of materials, the calculation model of the loss in the flexural stiffness of the prestressed concrete beam was established based on the existing prestress. The accuracy of the non-linear calculation method and the results obtained for the section were verified by conducting a bending destruction test on two pieces of the 16 m prestressed concrete hollow plate in the same batch and by utilising the measured strain and displacement data on the concrete at the top edge of the midspan section under all load levels.

Findings

The flexural stiffness of the section decreases rapidly at first and then gradually, and structural rigidity is sensitive to the initial cracking of the beam. The method for calculating the loss in the flexural stiffness of the section established with the existing stress of prestressed reinforcement as a parameter is accurate and feasible. It realizes the possibility of assessing the loss in the rigidity of a prestressed concrete structure by adopting the existing stress of prestressed reinforcement as a parameter.

Originality/value

A method for quickly determining the loss in the stiffness of structures using existing prestress is established. By employing this method, engineers can rapidly determine whether a bridge is dangerous or not without performing a loading test. Thus, this method not only ensures the safety of human life, but also reduces the cost of testing.

Details

International Journal of Structural Integrity, vol. 10 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 14 September 2010

Zhang Junxi, Lu Jinliang, Yan Licheng, Feng Yu, Zhang Lingsong and Zhang Yu

The purpose of this paper is to investigate the application of electrochemical impedance spectroscopy (EIS) as a tool for determining the optimum protection potential (OPP) of…

372

Abstract

Purpose

The purpose of this paper is to investigate the application of electrochemical impedance spectroscopy (EIS) as a tool for determining the optimum protection potential (OPP) of brass in impressed current cathodic protection (ICCP) for a given environment.

Design/methodology/approach

The electrochemical measurements (EIS, polarization curves) were applied to study the electrode processes of brass in fresh water at different pH values.

Findings

The paper finds that the depolarizer in the electrode process of brass corrosion is different in solutions with different pH values, and has different key steps in the electrode processes. Hence, EIS is a better tool for the determination of the optimum polarization potential for brass in fresh water when the depolarizer of the cathodic half‐cell reaction in corrosion reaction is the dissolved oxygen. However, when the depolarizer in solution is changed, and especially if the reduction reaction of depolarization is not controlled by the mass transport, the EIS method may be not suitable to determine the OPP.

Originality/value

There have been few reports on the effect of pH on the applicability of EIS as a tool for determining the OPP. In this paper, it is clearly shown that the EIS method be suitable only to determine the OPP when the critical step in the electrochemical process is diffusion of the depolarizer. This research can offer theoretical guidelines for the application of EIS to determine the OPP in ICCP.

Details

Anti-Corrosion Methods and Materials, vol. 57 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 7 September 2015

Toru Yamada, Jinliang Yuan and Bengt Ake Sunden

The purpose of this paper is to find out the applicability of the many-body dissipative particle dynamics (MDPD) method for various real fluids by specifically focusing on the…

Abstract

Purpose

The purpose of this paper is to find out the applicability of the many-body dissipative particle dynamics (MDPD) method for various real fluids by specifically focusing on the effects of the MDPD parameters on the MDPD fluid properties.

Design/methodology/approach

In this study, the MDPD method based on van der Waals (vdw) equation of state is employed. The simulations are conducted by using LAMMPS with some modifications of the original package to include the many-body features in the simulation. The simulations are investigated in a three-dimensional Cartesian box solution domain in which MDPD particles are distributed. In order to evaluate the MDPD liquid characteristics for a stationary liquid film, self-diffusivity, viscosity, Schmidt number (Sc) and surface tension, are estimated for different MDPD parameters. The parameters are carefully selected based on previous studies. A set of single-droplet simulations is also performed to analyze the droplet characteristics and its behavior on a solid-wall. Besides, the relationship between the characteristic length in the DPD simulations and scaling parameters for the stationary liquid-film case is discussed by employing the Ohnesorge number.

Findings

The results show that the liquid properties in the MDPD simulations can be widely ranged by varying the MDPD parameters. The values are highly influenced by the many-body feature in the conservative force which is not included in the original DPD method. It is also found that the wetting ability of the MDPD fluid on solid walls can be easily controlled by changing a many-body parameter. The characteristic length between the MDPD reduced unit and real unit is related for the stationary liquid-film case by employing the Ohnesorge number.

Originality/value

The present parametric study shows that the liquid properties in the MDPD method can vary by carefully controlling the MDPD parameters, which demonstrates the high-potential applicability of the method for various real fluids. This will contribute to research areas in multi-phase transport phenomena at nano and sub-micron scales in, for example, fuel cells, batteries and other engineering devices involving porous media.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 July 2022

Baocheng Liu, Jinliang Liu, Yanqian Wen, Qinglin Hu, Liang Liu and Shili Zhao

In this paper, to obtain shear and bending performance of carbon fiber-reinforced polymer (CFRP)-strengthened beams bonded by geopolymers, the effects of impregnated adhesive…

Abstract

Purpose

In this paper, to obtain shear and bending performance of carbon fiber-reinforced polymer (CFRP)-strengthened beams bonded by geopolymers, the effects of impregnated adhesive types, strengthened scheme, CFRP layer and pre-cracked width are investigated, and the performance of CFRP-strengthened beams is validated by the establishment of Finite Element Models (FEMs).

Design/methodology/approach

In this paper, static loading test and finite element analysis of epoxy-CFRP-strengthened (ECS) and geopolymer-CFRP-strengthened (GCS) were carried out, and the bearing capacity and stiffness were compared, the results show that GCS reinforced concrete (RC) beam is feasible and effective.

Findings

The bearing capacity, crack distribution and development, load–deflection curves of GCS RC beams with different pre-crack widths were investigated. The reinforcement effect of geopolymer achieves the same as epoxy, effectively improving the ultimate bearing capacity of the beam, with a maximum increase rate of 28.9%. The failure mode of CFRP is broken in the yield failure stage of GCS RC beam with reasonable strengthening form, and the utilization rate of CFRP is improved. CFRP-strengthened layers, pre-cracked widths significantly affect the mechanical properties, and deformation properties of the strengthened beams.

Originality/value

Compared with ECS RC beams, the bearing capacity and stiffness of GCS RC beams are similar to or even better, indicating that GCS RC beam is feasible and effective. It is a new method for CFRP-strengthened beams, which not only conforms to the concept of national ecological civilization construction, but also provides an economical, environmentally friendly and excellent performance solution for structural reinforcement.

Details

International Journal of Structural Integrity, vol. 13 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 31 January 2024

Zhenkun Li, Zhili Zhao, Jinliang Liu and Xin Ding

To solve the problems caused by using precise molds for copper column positioning in the current column grid array package, this paper aims to optimize the proposed friction…

Abstract

Purpose

To solve the problems caused by using precise molds for copper column positioning in the current column grid array package, this paper aims to optimize the proposed friction plunge micro-welding (FPMW) technology without mold assistance, to overcome the problems of low interfacial bonding strength, shrinkage cavities and flash defects caused by the low hold-tight force of solder on the copper column.

Design/methodology/approach

A pressurizing device installed under the drill chuck of the friction welding machine is designed, which is used to apply a static constraint to the solder ball obliquely downward to increase the hold-tight force of the peripheral solder on the copper column during welding and promote the friction metallurgical connection between them.

Findings

The results show that the application of static constraint during welding can increase the compactness of the solder near the friction interface and effectively inhibit occurrences of flash, shrinkage cavities and crystal defects such as vacancies. Therefore, compared with the unconstrained (UC) FPMW, the average strength of the statically constrained (SC) FPMW joints and aged SC-FPMW joints can be increased by 51.1% and 122.6%, and the problem of the excessive growth of the interfacial connection layer in the UC-FPMW joints during aging can be effectively avoided.

Originality/value

The application of static constraint effectively inhibits the occurrence of defects such as shrinkage cavities, vacancies and flash in FPMW joints, and the welding quality is significantly improved.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 18